High-Frame-Rate Doppler Ultrasound Using a Repeated Transmit Sequence
نویسندگان
چکیده
The maximum detectable velocity of high-frame-rate color flow Doppler ultrasound is limited by the imaging frame rate when using coherent compounding techniques. Traditionally, high quality ultrasonic images are produced at a high frame rate via coherent compounding of steered plane wave reconstructions. However, this compounding operation results in an effective downsampling of the slow-time signal, thereby artificially reducing the frame rate. To alleviate this effect, a new transmit sequence is introduced where each transmit angle is repeated in succession. This transmit sequence allows for direct comparison between low resolution, pre-compounded frames at a short time interval in ways that are resistent to sidelobe motion. Use of this transmit sequence increases the maximum detectable velocity by a scale factor of the transmit sequence length. The performance of this new transmit sequence was evaluated using a rotating cylindrical phantom and compared with traditional methods using a 15-MHz linear array transducer. Axial velocity estimates were recorded for a range of±300 mm/s and compared to the known ground truth. Using these new techniques, the root mean square error was reduced from over 400 mm/s to below 50 mm/s in the high-velocity regime compared to traditional techniques. The standard deviation of the velocity estimate in the same velocity range was reduced from 250 mm/s to 30 mm/s. This result demonstrates the viability of the repeated transmit sequence methods in detecting and quantifying high-velocity flow.
منابع مشابه
Automatic Definition of an Anatomic Field of View for Volumetric Cardiac Motion Estimation at High Temporal Resolution
Fast volumetric cardiac imaging requires reducing the number of transmit events within a single volume. One way of achieving this is by limiting the field of view (FOV) of the recording to the myocardium when investigating cardiac mechanics. Although fully automatic solutions towards myocardial segmentation exist, translating that information in a fast ultrasound scan sequence is not trivial. I...
متن کاملRetrospective Synthetic Focusing with Correlation Weighting for Very High Frame Rate Ultrasound
The need of high frame-rate imaging has been triggered by the new applications of ultrasound imaging to transient elastography and real-time 3D ultrasound. Using plane wave excitation (PWE) is one of the methods to achieve very high frame-rate imaging since an image can be formed with a single insonification. However, due to the lack of transmit focusing, the image quality with PWE is lower com...
متن کاملHigh frame rate ultrasound imaging using parallel beamforming
The human heart contracts and relaxes approximately once each second. This isa complex process where different parts of the cardiac tissue contract and relax atdifferent times and at different rates. The accurate evaluation of this deformation withultrasound requires the use of a high frame rate. The frame rate of a conventionalultrasound image is limited by the round trip propa...
متن کاملMultiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even mo...
متن کاملBiological Effect of Modern Fetal Ultrasound Techniques on Human Dermal Fibroblast Cells
Background: Diagnostic ultrasound has been used to detect human disease especially fetus abnormalities in recent decades. Although the harmful effects of diagnostic ultrasound on human have not been established so far, several researchers showed it has had bioeffects in cell lines and in experimental animals. Three-dimensional (3D), four-dimensional (4D), and color Doppler sonography are new te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018